Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Trends in Anaesthesia and Critical Care ; 40:67-69, 2021.
Article in English | ScienceDirect | ID: covidwho-1439447

ABSTRACT

The 19th century German philosopher Friedrich Nietzsche, within the large body of his production, powerfully depicted the concept of resilience with the quote I choose to use as title for this letter from the European Airway Management Society President addressed to the members of the Society.

2.
Br J Anaesth ; 129(5): 679-692, 2022 11.
Article in English | MEDLINE | ID: covidwho-1966391

ABSTRACT

BACKGROUND: We performed a systematic review of mechanically ventilated patients with COVID-19, which analysed the effect of tracheostomy timing and technique (surgical vs percutaneous) on mortality. Secondary outcomes included intensive care unit (ICU) and hospital length of stay (LOS), decannulation from tracheostomy, duration of mechanical ventilation, and complications. METHODS: Four databases were screened between January 1, 2020 and January 10, 2022 (PubMed, Embase, Scopus, and Cochrane). Papers were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population or Problem, Intervention or exposure, Comparison, and Outcome (PICO) guidelines. Meta-analysis and meta-regression for main outcomes were performed. RESULTS: The search yielded 9024 potentially relevant studies, of which 47 (n=5268 patients) were included. High levels of between-study heterogeneity were observed across study outcomes. The pooled mean tracheostomy timing was 16.5 days (95% confidence interval [CI]: 14.7-18.4; I2=99.6%). Pooled mortality was 22.1% (95% CI: 18.7-25.5; I2=89.0%). Meta-regression did not show significant associations between mortality and tracheostomy timing, mechanical ventilation duration, time to decannulation, and tracheostomy technique. Pooled mean estimates for ICU and hospital LOS were 29.6 (95% CI: 24.0-35.2; I2=98.6%) and 38.8 (95% CI: 32.1-45.6; I2=95.7%) days, both associated with mechanical ventilation duration (coefficient 0.8 [95% CI: 0.2-1.4], P=0.02 and 0.9 [95% CI: 0.4-1.4], P=0.01, respectively) but not tracheostomy timing. Data were insufficient to assess tracheostomy technique on LOS. Duration of mechanical ventilation was 23.4 days (95% CI: 19.2-27.7; I2=99.3%), not associated with tracheostomy timing. Data were insufficient to assess the effect of tracheostomy technique on mechanical ventilation duration. Time to decannulation was 23.8 days (95% CI: 19.7-27.8; I2=98.7%), not influenced by tracheostomy timing or technique. The most common complications were stoma infection, ulcers or necrosis, and bleeding. CONCLUSIONS: In patients with COVID-19 requiring tracheostomy, the timing and technique of tracheostomy did not clearly impact on patient outcomes. SYSTEMATIC REVIEW PROTOCOL: PROSPERO CRD42021272220.


Subject(s)
COVID-19 , Critical Illness , Humans , Critical Illness/therapy , Time Factors , Tracheostomy/methods , Respiration, Artificial/methods , Length of Stay
3.
J Clin Med ; 11(15)2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1957361

ABSTRACT

The SARS-CoV-2 pandemic heavily impacted healthcare workers, increasing their physical and psychological workload. Specifically, COVID-19 patients' airway management is definitely a challenging task regarding both severe and acute respiratory failure and the risk of contagion while performing aerosol-generating procedures. The category of anesthesiologists and intensivists, the main actors of airway management, showed a poor psychological well-being and a high stress and burnout risk. Identifying and better defining the specific main SARS-CoV-2-related stressors can help them deal with and effectively plan a strategy to manage these patients in a more confident and safer way. In this review, we therefore try to analyze the relevance of human factors and non-technical skills when approaching COVID-19 patients. Lessons from the past, such as National Audit Project 4 recommendations, have taught us that safe airway management should be based on preoperative assessment, the planning of an adequate strategy, the optimization of setting and resources and the rigorous evaluation of the scenario. Despite, or thanks to, the critical issues and difficulties, the "take home lesson" that we can translate from SARS-CoV-2 to every airway management is that there can be no more room for improvisation and that creating teamwork must become a priority.

4.
J Anesth Analg Crit Care ; 2(1): 32, 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1938380

ABSTRACT

INTRODUCTION: Significant concerns raise for the healthcare workers involved in airway management of patients diagnosed with coronavirus 2019 disease (COVID-19). Due to shortages of personal protective equipment (PPE), barrier enclosure systems such as aerosol box (AB) have been proposed worldwide. The aim of this study was to evaluate our experience using AB as protective equipment in patients with COVID-19 in a third-level center in Mexico. METHODS: A retrospective study of COVID-19 patients requiring airway management using an AB in the Hospital Central Sur de Alta Especialidad de Pemex in Mexico City from March 1 to June 1, 2020. Antropometric data, pre-intubation vital signs, and laboratory tests were recorded; the primary endpoints were intubation success rate and complications associated with AB and patients' mortality. As a secondary endpoint, AB subjective evaluation was explored by administering a survey after airway management procedures. RESULTS: Thirty-nine patients for a total of 40 intubations were documented. Thirty-one (77.5%) were men, with a mean age of 61.65 years; successful intubation occurred in 39 (97.55%) of the procedures, and AB was used in 36 (90%) of intubations, with success in 28 (70.0%); A Cormack-Lehane grade 3 view was recorded in 18 patients (46.2%), and during the procedure, the AB had to be removed in 8 (22.2%) cases, with migration documented in 91.6% of cases. The 30-day mortality was 48.71%, with 23.0% of patients discharged. 83.3% of surveyed anesthesiologists reported significant limitations in manipulating airway devices with AB used. CONCLUSION: Our data indicate that in clinical practice, the use of AB may hinder airway management and decrease the intubation success rate and may also result in patients' injury. Further studies are necessary to validate the use of AB in clinical practice, and they should not replace certified PPE.

5.
J Anesth Analg Crit Care ; 2(1): 3, 2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1636933

ABSTRACT

BACKGROUND: Airway management for thoracic surgery represents a high risk setting for SARS-CoV-2 infection diffusion due to complex and invasive airway instrumentation and techniques. RESULTS: An 18-item questionnaire was submitted to the 56 members of the Thoracic subcommittee of the SIAARTI Cardio-Thoraco-Vascular Research Group to provide a snapshot of current situation and national variability of devices and procedures for airway management during the COVID-19 pandemic. The response rate was 64%. Eighty-three percent of anesthetists declared that they modified their airway management strategies. The Hospital Management considered necessary to provide a complete level 3 personal protective equipment for thoracic anesthetists only in 47% of cases. Double-lumen tube and bronchial blocker were preferred by 53% and 22% of responders to achieve one-lung ventilation respectively. Over 90% of responders considered the videolaryngoscope with separate screen and rapid sequence induction/intubation useful to minimize the infection risk. Thirty-nine percent of participants considered mandatory the bronchoscopic check of airway devices. Vivasight-DL was considered comfortable by more than 50% of responders while protective box and plastic drape were judged as uncomfortable by most of anesthetists. CONCLUSIONS: The survey reveals many changes in the clinical practice due to SARS-CoV-2 outbreak. A certain diffusion of new devices such as the VivaSight-DL and barrier enclosure systems emerged too. Finally, we found that most of Italian hospitals did not recognize thoracic anesthesia as a high-risk specialty for risk of virus diffusion.

6.
J Anesth Analg Crit Care ; 1(1): 13, 2021 Nov 13.
Article in English | MEDLINE | ID: covidwho-1518330

ABSTRACT

Obesity is associated to an increased risk of morbidity and mortality due to respiratory, cardiovascular, metabolic, and neoplastic diseases. The aim of this narrative review is to assess the physio-pathological characteristics of obese patients and how they influence the clinical approach during different emergency settings, including cardiopulmonary resuscitation. A literature search for published manuscripts regarding emergency and obesity across MEDLINE, EMBASE, and Cochrane Central was performed including records till January 1, 2021. Increasing incidence of obesity causes growth in emergency maneuvers dealing with airway management, vascular accesses, and drug treatment due to both pharmacokinetic and pharmacodynamic alterations. Furthermore, instrumental diagnostics and in/out-hospital transport may represent further pitfalls. Therefore, people with severe obesity may be seriously disadvantaged in emergency health care settings, and this condition is enhanced during the COVID-19 pandemic, when obesity was stated as one of the most frequent comorbidity. Emergency in critical obese patients turns out to be an intellectual, procedural, and technical challenge. Organization and anticipation based on the understanding of the physiopathology related to obesity are very important for the physician to be mentally and physically ready to face the associated issues.

7.
J Cardiothorac Vasc Anesth ; 35(12): 3528-3546, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1392920

ABSTRACT

The novel coronavirus pandemic has radically changed the landscape of normal surgical practice. Lifesaving cancer surgery, however, remains a clinical priority, and there is an increasing need to fully define the optimal oncologic management of patients with varying stages of lung cancer, allowing prioritization of which thoracic procedures should be performed in the current era. Healthcare providers and managers should not ignore the risk of a bimodal peak of mortality in patients with lung cancer; an imminent spike due to mortality from acute coronavirus disease 2019 (COVID-19) infection, and a secondary peak reflecting an excess of cancer-related mortality among patients whose treatments were deemed less urgent, delayed, or cancelled. The European Association of Cardiothoracic Anaesthesiology and Intensive Care Thoracic Anesthesia Subspecialty group has considered these challenges and developed an updated set of expert recommendations concerning the infectious period, timing of surgery, vaccination, preoperative screening and evaluation, airway management, and ventilation of thoracic surgical patients during the COVID-19 pandemic.


Subject(s)
Anesthesia , Anesthesiology , COVID-19 , Critical Care , Humans , Pandemics , SARS-CoV-2
8.
Minerva Anestesiol ; 87(4): 387-390, 2021 04.
Article in English | MEDLINE | ID: covidwho-1339787
11.
Crit Care ; 25(1): 106, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1136238

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) pandemic has caused unprecedented pressure on healthcare system globally. Lack of high-quality evidence on the respiratory management of COVID-19-related acute respiratory failure (C-ARF) has resulted in wide variation in clinical practice. METHODS: Using a Delphi process, an international panel of 39 experts developed clinical practice statements on the respiratory management of C-ARF in areas where evidence is absent or limited. Agreement was defined as achieved when > 70% experts voted for a given option on the Likert scale statement or > 80% voted for a particular option in multiple-choice questions. Stability was assessed between the two concluding rounds for each statement, using the non-parametric Chi-square (χ2) test (p < 0·05 was considered as unstable). RESULTS: Agreement was achieved for 27 (73%) management strategies which were then used to develop expert clinical practice statements. Experts agreed that COVID-19-related acute respiratory distress syndrome (ARDS) is clinically similar to other forms of ARDS. The Delphi process yielded strong suggestions for use of systemic corticosteroids for critical COVID-19; awake self-proning to improve oxygenation and high flow nasal oxygen to potentially reduce tracheal intubation; non-invasive ventilation for patients with mixed hypoxemic-hypercapnic respiratory failure; tracheal intubation for poor mentation, hemodynamic instability or severe hypoxemia; closed suction systems; lung protective ventilation; prone ventilation (for 16-24 h per day) to improve oxygenation; neuromuscular blocking agents for patient-ventilator dyssynchrony; avoiding delay in extubation for the risk of reintubation; and similar timing of tracheostomy as in non-COVID-19 patients. There was no agreement on positive end expiratory pressure titration or the choice of personal protective equipment. CONCLUSION: Using a Delphi method, an agreement among experts was reached for 27 statements from which 20 expert clinical practice statements were derived on the respiratory management of C-ARF, addressing important decisions for patient management in areas where evidence is either absent or limited. TRIAL REGISTRATION: The study was registered with Clinical trials.gov Identifier: NCT04534569.


Subject(s)
COVID-19/complications , Consensus , Delphi Technique , Respiratory Insufficiency/therapy , Respiratory Insufficiency/virology , Humans
14.
Minerva Anestesiol ; 87(5): 604-612, 2021 05.
Article in English | MEDLINE | ID: covidwho-983870

ABSTRACT

A novel Coronavirus was identified in late 2019 as the cause of COVID-19 disease which is highly contagious. SARS-CoV-2 is a single-stranded RNA, enveloped virus from the beta Coronavirus family. Intraoperative management of patients with COVID-19 is a high-risk procedure. An international attention has raised to develop recommendations for the management strategies. This review article was designed to synthesize the existing evidence and experience related to intraoperative management of COVID-19. This review provides a summary of clinical guidance and addresses six domains: principles of intraoperative monitoring, airway management and related difficulties, ventilation, type of anesthesia, medications and side effects, and intraoperative fluid management.


Subject(s)
COVID-19/complications , Operating Rooms , Airway Management , Anesthesia , Fluid Therapy , Humans , Infection Control , Intraoperative Care , Pandemics
17.
Br J Anaesth ; 125(6): 880-894, 2020 12.
Article in English | MEDLINE | ID: covidwho-796966

ABSTRACT

Exposure of healthcare providers to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a significant safety concern during the coronavirus disease 2019 (COVID-19) pandemic, requiring contact/droplet/airborne precautions. Because of global shortages, limited availability of personal protective equipment (PPE) has motivated the development of barrier-enclosure systems, such as aerosol boxes, plastic drapes, and similar protective systems. We examined the available evidence and scientific publications about barrier-enclosure systems for airway management in suspected/confirmed COVID-19 patients. MEDLINE/Embase/Google Scholar databases (from December 1, 2019 to May 27, 2020) were searched for all articles on barrier enclosures for airway management in COVID-19, including references and websites. All sources were reviewed by a panel of experts using a Delphi method with a modified nominal group technique. Fifty-two articles were reviewed for their results and level of evidence regarding barrier device feasibility, advantages, protection against droplets and aerosols, effectiveness, safety, ergonomics, and cleaning/disposal. The majority of analysed papers were expert opinions, small case series, technical descriptions, small-sample simulation studies, and pre-print proofs. The use of barrier-enclosure devices adds to the complexity of airway procedures with potential adverse consequences, especially during airway emergencies. Concerns include limitations on the ability to perform airway interventions and the aid that can be delivered by an assistant, patient injuries, compromise of PPE integrity, lack of evidence for added protection of healthcare providers (including secondary aerosolisation upon barrier removal), and lack of cleaning standards. Enclosure barriers for airway management are no substitute for adequate PPE, and their use should be avoided until adequate validation studies can be reported.


Subject(s)
Aerosols , Airway Management/instrumentation , Coronavirus Infections/therapy , Patient Isolation/instrumentation , Pneumonia, Viral/therapy , Airway Management/methods , COVID-19 , Humans , Infection Control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Pandemics , Patient Isolation/methods , Personal Protective Equipment
18.
Trends in Anaesthesia and Critical Care ; 34:1-3, 2020.
Article | ScienceDirect | ID: covidwho-779676
SELECTION OF CITATIONS
SEARCH DETAIL